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Zeroth Law: If two systems are independently in 
equilibrium with a third one, then they are in thermal 
equilibrium with each other. This law establishes the 
concept of temperature.

A is equilibrium with B and B is in equilibrium with C. 
So, A and C are  in thermal equilibrium. 
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First Law: Energy is conserved in any process if heat is taken into account.
𝑑𝑈 =  𝑑𝑄 +  𝑑𝑊

Here we consider the work done on the system as positive. 

Otherwise 

The change in internal energy of a system equals the heat added to the system minus 
the work done by the system

𝑑𝑈 =  𝑑𝑄 −  𝑑𝑊
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Second Law:   The entropy of a closed system either remains 
constant or increases (in any irreversible process). It is unaltered in 
any reversible process.

• For a reversible process: Δ𝑆=0

• An irreversible process: Δ𝑆 >  0

Consequences: 

• No heat engine can be 100% efficient.

• No refrigerator can transfer heat from a colder to a hotter 
reservoir without external work. Δ𝑆 ≥ 0
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Third Law: The Quest for Absolute Zero. At absolute zero (0 K), a perfect crystal 
reaches zero entropy (S = 0), representing a state of perfect molecular order.

• Key Constraint: Absolute zero is a limit that can be approached but never 
actually reached (T→ 0, but T ≠ 0).

• The Cooling Paradox: Each cooling cycle removes less heat than the one before, 
making the final approach to  0 K infinitely long.

• Motion vs. Order: While thermal disorder vanishes, zero-point motion prevents 
atoms from becoming truly stationary, as dictated by quantum mechanics.



Fundamental of Thermodynamics
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Thermodynamics is the study of the relationships between energy, heat, 
temperature, and work.

• Temperature (T): A measure of an object's tendency to spontaneously give up 
energy to its surroundings.

• Heat (Q): The spontaneous flow of energy from one object to another driven 
solely by a temperature difference.

• Work (W): Any non-spontaneous energy transfer into or out of a system (e.g., 
mechanical displacement or electrical flow).

• The Law of Conservation (First Law). Energy is never created or destroyed; it 
is only transformed. The total energy of the universe remains constant.

Forms of Energy: Kinetic, Electrostatic, Gravitational, Chemical, and Nuclear.



Systems, Surroundings, and Boundaries
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In thermodynamics, we define our universe in three 
parts:

• System: The specific matter or region being 
studied.

• Surroundings: Everything external to the 
system.

• Boundary: The real or imaginary surface that 
separates the system from its surroundings.



Types of Boundaries
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Boundaries dictate how the system interacts with the world 
(closed or open):

Fixed vs. Movable: A boundary can be rigid (like a steel tank) 
or flexible (like a piston or a balloon).

Permeability: Boundaries are classified by what they allow to 
pass—mass, heat, or work.

System Type Mass Transfer? Energy Transfer? Example

Closed System No Yes (Heat/Work) A sealed balloon or a piston-cylinder.

Open System Yes Yes A turbine, nozzle, or a water heater.

Isolated System No No
An ideal thermos (no heat or mass 

exchange).
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The nature of the boundary (the "wall") determines how a 
system interacts with its surroundings..

➢ Adiabatic Walls: An adiabatic wall is a perfect insulator. It 
prevents the transfer of heat (Q = 0) between the system 
and the surroundings.

• Note: While heat cannot pass, energy can still be 
transferred as work if the wall is movable (like a 
piston).

➢ Diathermal walls: It is a thermal conductor (e.g., a thin 
sheet of metal). It allows the transfer of energy as heat, 
enabling the system to reach thermal equilibrium with its 
surroundings.

It prevents the transfer of matter but allows temperatures to 
equalize.



The Isolated System & Equilibrium
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The Isolated System: A system is isolated only if it is contained by walls that are:

• Adiabatic (no heat transfer).

• Rigid (no work/mechanical transfer).

• Impermeable (no mass transfer).

Thermodynamic Equilibrium: If an isolated system is left undisturbed for a long 
enough period, it reaches a state where its macroscopic properties (like pressure, 
temperature, and density) no longer change over time. This state is known as 
Thermodynamic Equilibrium.

The Postulate of Equilibrium: All isolated systems will eventually "relax" into this 
stable, uniform state.



Equilibrium and Processes
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Thermodynamic Equilibrium. A system is in equilibrium when its macroscopic 
properties are uniform throughout and do not change over time (provided the system is 
isolated). To reach full thermodynamic equilibrium, several conditions must be met:

• Thermal Equilibrium: The temperature is the same throughout the system.

• Mechanical Equilibrium: There are no unbalanced forces or pressure gradients.

• Phase Equilibrium: The mass of each phase (solid, liquid, gas) remains constant.

• Chemical Equilibrium: The chemical composition does not change over time.



Equilibrium and Processes
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Processes and Paths. When a system moves from one equilibrium state to another, it 
undergoes a Thermodynamic Process.

• Path: The specific sequence of intermediate states the system passes through during a 
process.

• Quasi-static Process: A process that happens slowly enough that the system remains 
infinitesimally close to an equilibrium state at every point.

Type Definition Examples

State Variable (Function)

Depends only on the current state of the 

system, not how it got there. They are 

path-independent.

Pressure (P), Volume (V), Temp 

(T), Internal Energy (U)

Path Function
Values depend on the specific route 

taken between two states.
Heat (Q) and Work (W)
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Quasi-static Process (The “slow” Process): A process that 
happens so slowly that the system remains in internal 
equilibrium at every instant.

Uniformity: Temperature (T) and Pressure (P) remain 
uniform throughout the system at all times.

Path: The process can be drawn as a continuous line on a 
P-V diagram because every intermediate point is a defined 
equilibrium state.



Quasi-Static vs Reversible Process
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Reversible Process (The "Ideal" Process). A process is 
reversible if both the system and its surroundings can be 
returned to their exact initial states without leaving any 
change in the universe.

The Two Requirements for Reversibility:

1. It must be Quasi-static: The system must stay in 
equilibrium along the path.

2. It must be Non-Dissipative: There are no "losses" due 
to friction, viscosity, electrical resistance, or turbulence.

Key Distinction: All reversible processes are quasi-static, 
but not all quasi-static processes are reversible.



Quasi-Static vs Reversible Process
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Feature Quasi-Static Process Reversible Process

Speed Infinitely slow. Infinitely slow.

Equilibrium Maintained throughout. Maintained throughout.

Dissipation

Can have friction (e.g., a 

piston moving slowly against 

high friction).

Zero friction or energy 

"loss."

Restoration
System might return, but 

surroundings are changed.

System and 

Surroundings both return 

to original states.



Common Thermodynamics Processes
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The prefix “ISO-” comes from the Greek isos, 
meaning "equal." It designates a process where a 
specific property remains constant.

Process Constant Property Mathematical Condition

Isothermal Temperature ΔT = 0  (T = constant)

Isobaric Pressure ΔP = 0  (P = constant)

Isochoric (isometric or 

isovolumetric)
Volume ΔV = 0 (V =  constant)



Thermodynamics Cycles
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A Cycle is a sequence of processes where the system 
eventually returns to its initial state.

• Condition: Since the start and end points are the same, 
the net change in any state function (like internal 
energy or temperature) is zero: ΔUcycle = 0.

• Work & Heat: While the state doesn't change, the 
system can still perform net Work (W) or exchange 
net Heat (Q) over the course of the cycle. This is the 
basis for engines and refrigerators.



Ideal Gas
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Low density gas follows the ideal gas law:
𝑃𝑉 = 𝑛𝑅𝑇

Where 𝑁 = 𝑛 × 𝑁𝐴

𝑃𝑉 =
𝑁

𝑁𝐴
𝑅𝑇 ⇒  𝑃𝑉 =  𝑁𝑘𝐵𝑇

• Universal constant, R,  in SI units is 8.31 J /mol.K,

• Boltzmann constant: 𝑘𝐵 = 1.38 × 10−23 𝐽/𝐾

• Avogadro's number: 𝑁𝐴 =  6.02 × 10
23

 𝑚𝑜𝑙
−1

• SI unit of pressure: 1 𝑃𝑎 = 1 𝑁/𝑚2 

• 1 𝑎𝑡𝑚 = 1.013 × 105 𝑃𝑎 

• 1 𝑏𝑎𝑟 = 1 × 105 𝑃𝑎



Pressure: Microscopic Model of an Ideal Gas
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Consider an ideal gas confined in a chamber of length 𝐿along the 

𝑥-direction, with a piston (or wall) of area 𝐴. The pressure on the 

wall arises from molecular collisions.  The average pressure on the 

piston is defined as :

𝑃 =
𝐹𝑥

𝐴
By Newton’s third law,

𝐹𝑥,𝑜𝑛 𝑝𝑖𝑠𝑡𝑜𝑛  =  −𝐹𝑥,𝑜𝑛 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒

For a gas molecule of mass m with velocity component 𝑣𝑥

• Time between successive collisions with the same wall:

Δ𝑡 =
2𝐿

𝑣𝑥

Change in momentum during an elastic collision:

Δ𝑣𝑥  =  𝑣𝑥,𝑓𝑖𝑛𝑎𝑙  −  𝑣𝑥,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  =  (−𝑣𝑥)  − (𝑣𝑥)  =  −2 𝑣𝑥



Pressure: Microscopic Model of an Ideal Gas
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The average force on molecule is:

Ԧ𝐹x, gas = m
Δ𝑣𝑥

Δ𝑡
= 𝑚 −

2𝑣𝑥

2𝐿/𝑣𝑥
= −

𝑚𝑣𝑥
2

𝐿

The negative sign indicated the force direction; the pressure 

depends on the magnitude.

The pressure becomes on the wall

𝑃 =  −
𝐹𝑥,𝑔𝑎𝑠

𝐴
 = −

𝑚𝑣𝑥
2

𝐿 𝐴
=

𝑚𝑣𝑥
2

𝑉

Where the volume  𝑉 = 𝐴𝐿 

For a gas with many molecules and isotropic motion, this result is 

averaged over all molecules, leading to:

𝑃 =
1

3

𝑁𝑚 𝑣2

𝑉



Average Pressure and Molecular Kinetic Energy

21

From the kinetic-theory derivation, the average pressure satisfies

𝑃𝑉 =  𝑚𝑣1𝑥
2  +  𝑚𝑣2𝑥

2  +  𝑚 𝑣3𝑥
2  + ⋯ 

For a gas containing a large number 𝑁N of molecules, this becomes

𝑃𝑉 =  𝑁𝑚 𝑣𝑥
2 = 𝑁𝑚 𝑣𝑥

2

where 𝑣𝑥
2 is mean square x-component of the molecular velocity. 

Relation to Temperature

𝑘𝑇 =  𝑚 𝑣𝑥
2 ⇒

1

2
𝑚 𝑣𝑥

2 =
1

2
𝑘𝐵𝑇

The average translational kinetic energy  is then

𝐾𝑡𝑟𝑎𝑛𝑠 =
1

2
𝑚 𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2 =
3

2
𝑘𝐵𝑇

Since molecular motion is isotropic 𝑣𝑥
2 = 𝑣𝑦

2 = 𝑣𝑧
2



Root-Mean-Square (RMS) Speed
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The root-mean-square (rms) speed of molecules in an ideal gas is defined as

𝑣𝑟𝑚𝑠 ≡  𝑣2  =
3𝑘𝐵𝑇

𝑚

Thermal energy at room temperature:

In SI units

𝑘𝐵𝑇 =  1.× 10−23
𝐽

𝐾
300𝐾 =  4.14 × 10−21 𝐽

In electron-volts

𝑘𝐵𝑇 = 8.62 ×  10−5
𝑒𝑉

𝐾
300 𝐾 =  0.026 𝑒𝑉 ≈

1

40
 𝑒𝑉



Equipartition Theorem 
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The Equipartition Theorem is not restricted to translational kinetic energy. Each 
independent quadratic term in the energy is called a degree of freedom.

Examples of quadratic degrees of freedom include:

• Translational kinetic energy:  
1

2
𝑚𝑣𝑥

2,
1

2
𝑚𝑣𝑦

2,
1

2
𝑚𝑣𝑧

2

• Rotational kinetic energy: 
1

2
𝐼𝜔𝑥

2,
1

2
𝐼𝜔𝑦

2 ,

• Vibrational (elastic) potential energy: 

1

2
𝑘𝑠𝑥2



Equipartition Theorem 
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At temperature T, the average energy associated with each quadratic degree of 
freedom is

1

2
𝑘𝑇

Total Thermal Energy

For a system of 𝑁 molecules, each having 𝑓 active quadratic degrees of freedom 
(with no other temperature-dependent energy contributions),

𝑈 = 𝑁. 𝑓.
1

2
 𝑘𝑇



Translational Motion
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All molecules (mono-, di-, and polyatomic) have 3 translational degrees of freedom

→ motion along the 𝑥, 𝑦, and 𝑧 directions; Transilational Energy 
1

2
𝑚𝑣𝑥

2,
1

2
𝑚𝑣𝑦

2, and 
1

2
𝑚𝑣𝑧

2



Rotational Motion
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▪ Diatomic and linear molecules (e.g., CO, N₂, CO₂):

▪ Can rotate about two axes perpendicular to the 
molecular axis

▪ Rotation about the bond axis contributes negligible 
moment of inertia

▪ Rotational degrees of freedom = 2

▪ Nonlinear polyatomic molecules (e.g., H₂O, CH₄):

▪ Can rotate about all three principal axes

▪ Rotational degrees of freedom = 3



Vibrational Motion
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▪ Molecules can vibrate through stretching, bending, twisting, etc.

▪ Each normal mode of vibration contributes two degrees of freedom
(one kinetic + one potential).

▪ Number of vibrational modes depends on molecular geometry:

▪ Linear molecules: 3𝑁 − 5

▪ Nonlinear molecules: 3𝑁 − 6



Summary
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Molecule Type Translation Rotation Vibration Total (3N)

Monatomic 

(e.g., He)
3 0 0 3

Linear (e.g., 

𝐶𝑂2)
3 2 3N – 5 3N

Non-linear 

(e.g., 𝐻2𝑂)
3 3 3N - 6 3N



First Law of Thermodynamics (Conservation of Energy)
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Energy can be neither created nor destroyed during a physical process; it can only 
be transferred or transformed from one form to another. This principle is known 
as the conservation of energy.

Mathematically, the First Law of Thermodynamics is written as
dU = dQ + dW

For a reversible process, work can be expressed as 
𝑑𝑊 = −𝑃 𝑑𝑉

 which is equivalent to the familiar idea of 𝑓𝑜𝑟𝑐𝑒 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

• Compression, 𝑑𝑉 < 0 ⇒ 𝑑𝑊 > 0 where we are doing work on the system by 
squeezing 

• Expansion d𝑉 > 0 ⇒  d𝑊 < 0 where work is done by the system



Generalized (Configuration) Work
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System Intensive Extensive Work

Gas, Liquid or Solid Pressure, P Volume, V 𝑃𝑑𝑉

Film Surface Tension, γ Area, A 𝛾𝑑𝐴

Magnetic Material Magnetic Field, B
Magnetization, 

M
𝐵𝑑𝑀

Dielectric Material Electric Field, E Polarization, P 𝐸𝑑𝑃

Let 𝑋𝑖 denote an extensive variable and 𝑦𝑖its corresponding intensive conjugate 

variable. For a reversible process, the differential configuration (generalized) work 

is given by

𝜕𝑊𝑐𝑜𝑛𝑓 = ෍

𝑖

𝑦𝑖𝑑𝑋𝑖



First Law of Thermodynamics

31

Suppose now that we vary the state of a system through two different 

quasi-static paths. The change in energy is independent of the path 

taken:  In contrast the work done

ׯ 𝑑𝑈 = 𝑈 𝑃2, 𝑉2 − 𝑈 𝑃1, 𝑉1 = 0 (Internal energy is unchanged)

Depends on the path taken:

ර 𝜕𝑊 =  ර 𝑃 𝑑𝑉 =  ර 𝜕𝑄 ≠  0

𝑊𝑔𝑎𝑠 = න
𝑉𝑖

𝑉𝑓

𝑑𝑊𝑔𝑎𝑠 = න
𝑉𝑖

𝑉𝑓

𝑃𝑔𝑎𝑠𝑑𝑉

𝑊𝑔𝑎𝑠 = න
𝑉𝑖

𝑉𝑓 𝑁𝑘𝐵𝑇

𝑉
𝑑𝑉 = 𝑁𝑘𝐵𝑇𝐿𝑜𝑔

𝑉𝑓

𝑉𝑖



First Law of Thermodynamics
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Let us consider a couple of other examples: Isobaric 

configuration work (constant pressure).

𝑊𝑔𝑎𝑠 = න
𝑉𝑖𝑛𝑖𝑡

𝑉𝑓𝑖𝑛

𝑃𝑔𝑎𝑠𝑑𝑉 = 𝑃𝑔𝑎𝑠 𝑉𝑓 − 𝑉𝑖

Isochoric configuration work: isochoric means 

constant volume. So, 𝑑𝑉 = 0, which means that

𝑊𝑔𝑎𝑠 = න
𝑉𝑖𝑛𝑖𝑡

𝑉𝑓𝑖𝑛

𝑃𝑔𝑎𝑠𝑑𝑉 = 0

The work done equal to area under the curve. The work 

done in any is under the PV curve which yield to 𝑊𝑛𝑒𝑡.



Example 2.1 
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Calculate what is the work done by a van der Waals gas when it expands 
isothermally from an initial volume 𝑣𝑖 to a final volume 𝑣

𝑓
. 

Hints: Van der Waals equation is 𝑃 +
𝑎

𝑣2 𝑣 − 𝑏 = 𝑘𝐵𝑇 



Heat Capacity

34

Heat capacity is a property of a system that quantifies how much the system’s 

temperature changes when energy is added as heat, along a specified thermodynamic 

path.

𝐶𝑥 =
𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑎𝑙𝑜𝑛𝑔 𝑝𝑎𝑡ℎ 𝑥

𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚
=

𝛿𝑄

𝛿𝑇
𝑥

Where, 

• 𝛿𝑄= heat added to the system

• 𝑑𝑇= resulting temperature change

• 𝑥 specifies the thermodynamic constraint (path)



Heat Capacity
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Common Heat Capacities

• Constant volume:

𝐶𝑉 =
𝛿𝑄

𝑑𝑇
𝑉

• Constant pressure:

𝐶𝑃 =
𝛿𝑄

𝑑𝑇
𝑃

Other examples (less common):

• Along saturation curve: 𝐶sat
• Constant external field: 𝐶𝐻



Heat Capacity
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Specific heat capacity refers to heat capacity per unit mass:

𝑐 =
𝐶

𝑚
Heat transfer relation:

𝑄 = 𝑚𝑐Δ𝑇
Where, 

• 𝑄= heat added

• 𝑚= mass

• 𝑐= specific heat capacity

• Δ𝑇= temperature change

Units

Heat capacity 𝐶: J·K⁻¹

Specific heat capacity 𝑐: J·kg⁻¹·K⁻¹



Heat Capacity at constant volume (Cv)
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At constant volume for an ideal monoatomic gas: 

𝑑𝑈 = 𝑑𝑄 and 𝑈 = 𝑁
3

2
𝑘𝐵𝑇, we get 

𝐶𝑉 =
Δ𝑄𝑉

Δ𝑇𝑉
=

Δ𝑈

Δ𝑇𝑉
=

𝜕𝑈

𝜕𝑇
𝑉

=
𝜕

3𝑁𝑘𝐵𝑇
2

𝜕𝑇 𝑉

𝐶𝑉 =
3𝑁𝑘𝐵

2
=

3

2
𝑛𝑅



Heat Capacity at constant volume (Cv)
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We adopt the convention that 𝑑𝑊dW is the work done on the system.The First 

Law is written as

𝑑𝑈 = 𝑑𝑄 + 𝑑𝑊

Pressure-Volume work (Reversible Process): 𝑑𝑊 = −𝑃𝑑𝑉

Heat Transfer Expressions, from the first law

𝑑𝑄 = 𝑑𝑈 − 𝑑𝑊

• Work done on the system (compression):

𝑑𝑊 > 0 ⇒  𝑑𝑄 = 𝑑𝑈 − 𝑑𝑊 = 𝑑𝑈 − |𝑑𝑊|

• Work done by the system (expansion):

𝑑𝑊 < 0 ⇒  𝑑𝑄 = 𝑑𝑈 − 𝑑𝑊 = 𝑑𝑈 + |𝑑𝑊|



Heat Capacity at Constant Pressure (Cp)
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The first law is

d𝑈 = 𝑑𝑄 + 𝑑𝑊 by the system

The work done by the system is 𝑃𝑑𝑉, 

𝑑𝑊 = −𝑃𝑑𝑉 ⇒ 𝑑𝑄 = 𝑑𝑈 + 𝑃𝑑𝑉

𝐶𝑃 =
𝜕𝑄

𝜕𝑇
𝑃

=
𝜕𝑈

𝜕𝑇
𝑃

+ 𝑃
𝜕𝑉

𝜕𝑇
𝑃

For an ideal monatomic gas, the internal energy depends only on temperature, 

𝑈 =
3

2
𝑁𝑘𝐵𝑇 ⇒

𝜕𝑈

𝜕𝑇
𝑃

=
3

2
𝑁𝑘𝐵𝑇 = 𝐶𝑉



Heat Capacity at Constant Pressure (Cp)
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Second term become using 𝑃𝑉 = 𝑁𝑘𝐵𝑇

𝑃
𝜕𝑉

𝜕𝑇
𝑃

= 𝑃
𝑁𝑘𝐵

𝑃

𝜕𝑇

𝜕𝑇
𝑃

= 𝑁𝑘𝐵

So, for isobaric process: 

𝐶𝑃 =
𝜕𝑈

𝜕𝑇
𝑃

+ 𝑃
𝜕𝑉

𝜕𝑇
𝑃

= 𝐶𝑉 +  𝑁𝑘𝐵 

Using N = nNA and 𝑅 = 𝑁𝐴𝑘𝐵 is the universal gas constant

 

 𝐶𝑃 = 𝐶𝑉 + 𝑛𝑅



Heat Capacity at Constant Pressure (Cp)
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The physical meaning of  𝐶𝑃 > 𝐶𝑉:

For a process at constant pressure, part of the energy transmitted to the system 

through heating goes into increasing the internal energy of the system, U, and part 

goes into performing work on the surroundings, doing expansion work, at constant 

pressure.
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You are told that the heat capacity at constant pressure, CP,  of a material varies as:   

𝐶𝑃 = 𝑁 𝑎 + 𝑏𝑇 −
𝑐

𝑇2      where a, b, and c are constants and N is the number of 

particles in the material.

Calculate the total energy transferred to the material through heating in an isobaric 

process in which the temperature is increased from To to 2To. 



Heat Capacity of Ideal gas

43

Heat capacity at constant volume, 𝐶𝑉 =
𝜕𝑈

𝜕𝑇 𝑉

We don’t want to confuse between specific heat capacity and heat capacity where 

specific heat capacity is 𝑐 = 𝐶/𝑚.

𝑑𝑄 = 𝑑𝑈 − 𝑑𝑊 = 𝐶𝑉𝑑𝑇 + 𝑃𝑑𝑉

where 𝑑𝑊 = −𝑝𝑑𝑉 and For adiabatic processes: 

d𝑄 = 0 ⇒ 𝑑𝑇 =  −
𝑃𝑑𝑉

𝐶𝑉

Recalling ideal gas equation, 𝑃𝑉 = 𝑛𝑅𝑇

𝑇 =
𝑃𝑉

𝑛𝑅
 →  𝑑𝑇 =

𝑃𝑑𝑉 + 𝑉𝑑𝑃

𝑛𝑅
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We get

0 = 𝑃𝑑𝑉
𝑛𝑅 + 𝐶𝑉

𝐶𝑉
+ 𝑉𝑑𝑃 

Recalling 𝑛𝑅 + 𝐶𝑉 = 𝐶𝑃

0 = 𝑃𝑑𝑉
𝐶𝑃

𝐶𝑉
+ 𝑉𝑑𝑃 = 𝛾𝑃𝑑𝑉 + 𝑉𝑑𝑃

Where, 𝛾 = 𝐶𝑃/𝐶𝑉

𝛾
𝑑𝑉

𝑉
+

𝑑𝑃

𝑃
= 0 
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𝛾
𝑑𝑉

𝑉
+

𝑑𝑃

𝑃
= 0 

By integrating 

𝛾 ln 𝑉 + ln 𝑃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

ln 𝑉𝛾 + ln 𝑃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑃𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

The above equation is for ideal gases, and recalling 𝛾:

𝛾 =
𝐶𝑝

𝐶𝑉
=

𝐶𝑉 + 𝑛𝑅

𝐶𝑉
= 1 +

2

𝑓

Where U = n f
1

2
𝑅𝑇 = 𝐶𝑉𝑇 ⇒  𝐶𝑉 =

1

2
𝑛 𝑓𝑅, f is degrees of freedom. 
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i. Monoatomic: 𝛾 = 1 +
2

𝑓
= 1 +

2

3
= 1.67

ii. Diatomic:  𝛾 = 1 +
2

𝑓
= 1 +

2

5
= 1.40

iii.Polyatomic: 𝛾 = 1 +
2

𝑓
= 1 +

2

6
= 1.33

Now using the ideal gas equation 𝑃𝑉 = 𝑛𝑅𝑇, the above expression can rederived as

𝑃𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 →  𝑇𝑉𝛾−1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

And 

𝑇𝛾

𝑃𝛾−1
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 Degree of freedom for translation motion is 3 for atoms and molecules, but degree of 

freedom for rotation and frequency is depended on temperature. 
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• Translational motion: 3 degree of freedom for all atoms and molecules and is 

active at essentially all temperatures.

Rotational and vibrational degrees of freedom depend on temperature because 

their energy levels are quantized.

• Rotational motion: linear molecule has 2 degree of freedom and polymolecule 

has 3 degree of freedom.

• Vibrational motion: linear molecule has 3𝑁 − 5 of degree of freedom and 

polymolecule has 3𝑁 − 6. 
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For Example, Diatomic Molecule 𝐻2

Low temperatures:  Only translational motion is 

appreciably excited. Rotational and vibrational 

modes are “frozen out” due to large energy spacing 

between quantum levels. 

Moderate temperatures (≈ 100–300 K): 

Rotational degrees of freedom become active. 

Vibrational motion remains frozen out.

High temperatures (≳ 1000 K): Vibrational 

degrees of freedom become active, contributing to 

the heat capacity

Heat capacity at constant volume of one 

mole of hydrogen (H2) gas as temperature. 
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• The activation of degrees of freedom is 

determined by thermal energy relative to 

quantum level spacing, not by phase changes. 

• 𝐻2 becomes liquid only under specific pressure 

conditions; phase is not required for rotational or 

vibrational modes to freeze out.

Heat capacity at constant volume of one 

mole of hydrogen (H2) gas as temperature. 



Thermodynamic State

50

The state of a system is its condition at a specific moment, uniquely defined by its 
macroscopic properties (e.g., P, V, T, 𝜌, N). 

The State Postulate: For a simple compressible system (one chemical species with a 
fixed number of particles), the state is uniquely determined by specifying two 
independent, intensive properties.

The Example of a Gas:

• If you define Pressure (P) and Volume (V), all other properties—such as Temperature 
(T), density (𝜌), and even "secondary" properties like viscosity or thermal 
conductivity—are automatically fixed.

• These properties can be mapped on a state space (e.g., a PV diagram).



51

Thank you very much for your attention
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